# Epidemiology and Environmental aspects of Marginal Zone Lymphomas



#### **Claire Dearden**

The Royal Marsden and The Institute of Cancer Research, Biomedical Research Centre, London, UK

# Disclosures

- Advisory Boards and Honoraria
  - Roche
  - Janssen/Pharmacyclics
  - Gilead
  - Abbvie
  - Sanofi/genzyme
  - Medimmune
  - Infinity

# MZL

- Group of rare lymphomas arising from memory B cells which normally reside in the 'marginal zone' of secondary lymphoid follicles
- MZL cells usually located in spleen and mucosaassociated lymphoid tissues
- Significant aetiological, clinical and pathological heterogeneity
- 3 distinct sub-types based on site of involvement
  - Extranodal (MALT, GIT, thyroid, orbit, leptomeninges, skin)
  - Nodal
  - Splenic (with or without villous lymphocytes)

# MZL: Incidence

- 5-17% of all NHL in adults
- MALT accounts for 50-70% MZL and 7-8% of NHL
  - Association with chronic antigen stimulation (infection, autoimmune disease)
  - Stomach is commonest extra-nodal site
  - Other sites include: ocular/adnexal, lung, skin, salivary glands
- Splenic MZL accounts for 20% of all MZL
- Nodal MZL least common (10%)

#### **Extranodal MZL: Patient Demographics**

- Overall M=F
- Differences in gender incidence by anatomical site eg gastric M>F, salivary glands F>M
- Median age 66 years
- Less favourable prognosis for GI and lung sites compared to ocular, skin and thyroid
- Older age adverse prognostic factor

# **MZL:** Patient Demographics

| Patient<br>Characteristics            | Extranodal<br>MZL (Gastric)                                                                               | Extranodal MZL (Other sites)                                                                                                                                     | Splenic MZL                                                                                                                        | Nodal MZL              |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Median age (years)                    | 66                                                                                                        | 66                                                                                                                                                               | 65                                                                                                                                 | 69                     |
| Gender                                | M > F                                                                                                     | Small intestine, skin,<br>kidney: M>F<br>Ocular/adnexal, lung,<br>colon: M=F<br>Salivary gland, thyroid:<br>F>M                                                  | F > M                                                                                                                              | M > F                  |
| Incidence (per<br>1,000,000 person y) | 3.8                                                                                                       | 0.9-1.4                                                                                                                                                          | 1.6                                                                                                                                | 5.7                    |
| Clinical features                     | <ul> <li>Asymptom<br/>atic</li> <li>Gastritis</li> <li>Gastric<br/>ulcers</li> <li>Weight loss</li> </ul> | <ul> <li>Small intestine:<br/>malabsorption,<br/>diarrhoea</li> <li>Ocular/adnexal:<br/>orbital swelling,<br/>neurology</li> <li>Skin: rash, pruritis</li> </ul> | <ul> <li>Splenomegaly</li> <li>Weight loss<br/>infection</li> <li>Fatigue</li> <li>Bleeding</li> <li>BM<br/>involvement</li> </ul> | • Inferior<br>survival |

#### Geographic Distribution of various MZL sub-types



- Gastric MALT highest incidence in Italy
- Ocular/adnexal MALT most frequently in Japan and Korea
- Skin Northern Europe and USA and Canada
- Small intestine -Southern Europe and Middle East

Colour Key: Green = MALT lymphoma of stomach; Red = Ocular/Adnexal Lymphoma; Blue = Skin MZL; Orange = Small Intestine MZL. NB: MZL = Marginal Zone Lymphoma; MALT = Mucosa-Associated Lymphoid Tissue

# MZL: Environmental Risk Factors

- Infections
- Autoimmune disease
- Smoking and Alcohol only moderate association
- No occupational risks identified

# MZL: Infections

- Pathogenetic mechanisms not fully understood
- Some cases have robust association eg H.Pylori and gastric MALT, others more tenuous
- Chronic stimulation of the host immune response with persistent lymphocyte activation leads to lympho-proliferation and clonal B cell malignancy

# Helicobacter Pylori

- Gram negative spiral rod-shaped bacterium
- Adapted to survive the stomach environment
- Overall Global prevalence of ~ 50%
- Wide variation in prevalence highest in S America, Sub-Saharan Africa and Middle East
- Form of gastric disease (gastritis, carcinoma, MALT) relates to other co-factors eg host genetics
- Gastric MALT accounts for <5% of primary gastric neoplasms
- Association of *H.Pylori* with MALT well established
  - Prevalence of infection maps to disease
  - Evidence of infection serologically, in GIT and in the tumour
  - Tumour response to eradication of infection

#### Gastric MALT lymphoma and H.pylori





- 1991 Wotherspoon *et al* described association between *H.pylori* and gastric MALT lymphoma, with 92% cases positive
- *H.pylori* eradication therapy results in 80% ORR, but is rarely successful in negative cases (15-30% ORR)
- Prevalence of *H.pylori* infection is <u>decreasing</u> with associated reduction in gastric MALT (GML)
- RMH series of 104 patients between 1995 -2013
  - Prevalence of *H.pylori* infection was 50%
  - 1995-2004 prevalence was 60% compared to 32% 2005-13

### Gastric MALT lymphoma and H.pylori



- CagA peptide is a secreted component related to the virulence of the organism
- Is taken up by epithelial cells and interacts with RAS/MEK/ERK pathway resulting in activation, migration and proliferation
- Also upregulates anti-apoptotic proteins (bcl-2) leading to persistent infection
- Inflammatory response generates reactive B and CD4+T-cells which stimulate neoplastic B cells leading to clonal expansion
- Variation in host immune response (IL-1)
- Further mutational events eg t(11:18)
- Broad spectrum of clinical features from none to gastric ulceration
- DLBCL component in 13%

#### Ocular/Adnexal lymphoma and C.psittaci



- *Chlamidophylia psittaci:* obligate intracellular bacterium found in birds
- Asymptomatic infection
- Overall prevalence 19% (47% in Germany to 11% in China)
- 50-70% of all ocular lymphomas
- IELSG study found 89% patients positive
- Antibiotics (doxycline) resulted in 65% ORR, 5y PFS 68%
- Clarithromycin may be effective at relapse
- 10y OS 81%

#### Skin MZL and Borrelia burgdorferi



- Borrelia burgdorferi causes Lyme disease, endemic in North America and Central Europe
- Chronic antigen stimulation resulting in lymphocyte infiltration in the dermis
- Serology often negative but DNA positive 10-42%
- Antibiotic treatment recommended
- Indolent behaviour

#### Small intestine MZL and C.jejune

- Campylobacter jejune is a zoonotic multi-host pathogen carried by birds
- Positive in intestinal biopsies
- Chronic antigenic stimulation resulting in production of alphaheavy chain from intestinal plasma cells and subsequent development of MZL
- Malabsorption syndrome, diarrhoea, abdominal pain
- Symptom control, nutritional support and antibiotics



#### Splenic/Nodal MZL and Hepatitis C virus



- HCV is a RNA virus transmitted through blood
- Variable geographical prevalence
- Stimulates polyclonal proliferation of B lymphocytes
- Chronic HCV infection associated with a 5 fold higher risk of MZL (splenic, nodal)
- Anti-viral therapy (IFN+/- ribovarin) has induced remissions in Splenic MZL and other HCV+ patients with indolent B-NHL

#### MZL: Associated Pathogens and Therapy

| Patient<br>Characteristics | Extranodal MZL<br>(Gastric)                                                    | Extranodal MZL (Other sites)                                                                                                                                                          | Splenic MZL            |
|----------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Associated<br>Pathogen     | H.pylori                                                                       | <ul> <li>Ocular/adnexal: <i>C.psittaci</i></li> <li>Small intestine: <i>C.jejune</i></li> <li>Skin: <i>B.burgdorferi</i></li> <li>Lung: <i>Mycobacterium spp</i></li> </ul>           | Hepatitis C            |
| Anti-infective<br>therapy  | Triple<br>eradication<br>(PPI, amoxicillin,<br>clarithromycin)<br>x 10-14 days | <ul> <li><i>C.psittaci</i> : doxicycline (3 weeks)</li> <li><i>C.jejune</i>: tetracycline or metronidazole</li> <li><i>B.burgdorferi</i> : cephalosporins or tetracyclines</li> </ul> | IFN-α +/-<br>ribovarin |

# Conclusions

- MZL account for only 5-17% of NHL
- The rarity of MZL has made large- scale population based studies difficult
- Increasing evidence linking certain infectious pathogens with specific anatomical sub-types of MZL
- Tumour regression is seen in some cases following antibiotic/viral therapy
- For some infections the evidence is sparse or controversial
- Further work is needed to examine the relationship between infection and MZL